CS/ECE/ISyE 524 Introduction to Optimization Spring 2017-18

20. Logic constraints, integer variables

e If-then constraints

Generalized assignment problems

Logic constraints

Modeling a restricted set of values

Sudoku!

Laurent Lessard (www.laurentlessard.com)

www.laurentlessard.com

If-then constraints

A single simple trick (with suitable adjustments) can help us
model a great variety of if-then constraints

The trick
e We'd like to model the constraint: if z = 0 then a'x < b.

e Let M be an upper bound for a'x — b.
e Write: a'x — b < Mz

e If z=0, then a'x — b < 0 as required.
Otherwise, we get a'x — b < M, which is always true.

If-then constraints

Slight change: if z =1 then a'x < b
e Again, let M be an upper bound for a'x — b
e Write: a'x — b< M(1 - 2)

Reversed inequality: if z =0 then a'x>b

e Write constraint as —a'x + b < 0
e Let m be an upper bound on —a"x + b
e Write: —a'x+b<mz. Sameas: a'x—b> —mz

e Note: —m is a lower bound on a'x — b.

If-then constraints

The converse: if a'x < bthen z =1

Equivalent to: if z = 0 then a'x > b (contrapositive).

The strict inequality is not really enforceable. Instead,
write: if z =0 then a'x > b+ ¢ where ¢ is small.

Let m be a lower bound for a'x — b and we obtain the
equivalent constraint: a'x — b > mz + (1 — z)

If z=0, we get a'x > b+ ¢, as required.
Otherwise, we get: a'x — b > m, which is always true.

Note: If a, x, b are integer-valued, we may set ¢ = 1.

If-then constraints (summary)

Logic statement

Constraint

if z=0thena'x <b

a'x—b< Mz

if z=0thena'x > b

a'x—b>mz

if z=1then a'x<b

a'x—b<M(1-2)

if z=1thena'x> b

a'x—b>m(l-2)

ifalx < bthenz=1

a'lx—b>mz+e(l-2)

ifa’lx >bthenz=1

a'x—b< Mz—g(1-2)

if a'x < bthen z=10

a'x—b>m(l—2z)+ez

if a’x > bthen z=10

a'x—b<M(1-2z)—ez

Where M and m are upper and lower bounds on a'x — b.

Return to fixed costs and lower bounds

e Modeling a fixed cost: if x > 0 then z = 1.

» Use the contrapositive: if z =0 then x < 0.
» Apply the 1%t rule on Slide 20-5.

e Modeling a lower bound: either x =0 or x > m.

» Equivalent to: if x > 0 then x > m.

» Equivalent to the following two logical constraints:
if x>0thenz=1, and if z=1 then x > m.

» The first one is a fixed cost (see above)
» The second one is the 4t" rule on Slide 20-5.

Generalized assignment problems (GAP)

Set of machines: M = {1,2,..., m} that can perform jobs.

(think of these as the facilities in the facility problem)
Machine i has a fixed cost of h; if we use it at all.

Machine i has a capacity of b; units of work (this is new!)

Set of jobs: N ={1,2,...,n} that must be performed.
(think of these as the customers in the facility problem)

Job j requires a;; units of work to be completed if it is
completed on machine /.

Job j will cost ¢ if it is completed on machine /.

Each job must be assigned to exactly one machine.

GAP model

minir;ﬂze Z hiz; + Z Z cijxj (fixed cost 4 assignment cost)

iEM ieEM jeN
subject to: Z x;j =1 Vj € N (one machine per job)
iem
Z agx; < b Vie M (work budget)
JEN
X,'jSZ,‘ \V/I.EM,_].GN (ifx,-j>0thenz,-=1)

xj,zi € {0,1} Vie M, je N (all binary!)

e z; =1 if machine / is used, and
e x; = 1if job j is performed by machine /.

e Note: many choices possible for M; and aggregations.

New constraints

Let's make GAP more interesting...

1. If you use k or more machines, you must pay a penalty of \.

2. If you operate either machine 1 or machine 2, you may not
operate both machines 3 and 4 at the same time.

3. If you operate both machines 1 and 2, then machine 3
must be operated at 40% of its capacity.

4. Each job j € N has a duration d;. Minimize the time we
have to wait before all jobs are completed.
(this is called the makespan).

GAP 1

If you use k or more machines, you must pay a penalty of \.

e Using k or more machines is equivalent to saying that

ztznt-+zZm >k

e lLet 4; = 1 if we incur the penalty. We now have the if-then
constraint: if Y.,z > k then §; = 1.

e Use the 6™ rule on Slide 20-5 and obtain:
diemZ < mdy+ (k—1)(1—01)

e add \J; to the cost function.

20-10

GAP 2

If you operate either machine 1 or machine 2, you may not
operate both machines 3 and 4 at the same time.

Operating machine 1 or machine 2: z; + z > 1.

Not operating machines 3 and 4: z3 + 2, <1

We must model z; + 20 > 1 — z3+ 2z <1

» Same trick as before: model this in two steps:
z1+2>1 = 0=1 and =1 — zz+2z <1
» First follows from 6" rule on Slide 20-5

» Second follows from 3" rule on Slide 20-5

Result: z; + 20 <26, and z3 + z4 + 02 < 2.

20-11

GAP 2 (cont’d)

If you operate either machine 1 or machine 2, you may not
operate both machines 3 and 4 at the same time.

We didn’t do anything to ensure that when z; = 1, the
machines are actually operating! (we didn’t explicitly disallow
paying the fixed cost without using the machine).

e To force the converse as well, include the constraint:
if z; = 1 then ZJGNXU >1

e Use the 4™ rule on Slide 20-5.

e Result: > .\ xj >z (for i=1,2,3,4)

20-12

GAP 3

If you operate both machines 1 and 2, then machine 3 must
be operated at 40% of its capacity.

Operate both machines 1 and 2: z; + 2z, > 2

Capacity of machine 3 drops: bs becomes 0.4b3.

Two parts to the implementation:

> z21+20>2 — 03=1. (6th rule on Slide 20-5)
> i3=1 — Zje/\f a3jx3j < 0.4b3. (3" rule on Slide 20-5)

Equivalently, just replace bs by: b3(1 — d3) + 0.4b303.

20-13

GAP 4

Each job j € N has a duration d;. Minimize the time we
have to wait before all jobs are completed. (the makespan)

Machine i completes all its jobs in time: Zje/\/xijdj

Minimax problem (no integer variables needed!)

Let t be the makespan; t = max;c (Zje/\/ x,-jdj>

Model: minimize t subject to:

t > qudj for all i € M
JEN

20-14

Logic constraints

e A proposition is a statement that evaluates to true or
false. One example we've seen: a linear constraint a'x < b.

e We'll use binary variables ¢; to represent propositions P;:

5 = 1 if proposition P; is true

0 if proposition P; is false
The term for this is that §; is an indicator variable.

How can we turn logical statements about the P;'s into
algebraic statements involving the 9;'s?

Some standard notation:

V means “or” =—> means “implies”
A means “and” <= means "“if and only if"
= means “not” &) means “exclusive or”

20-15

Boolean algebra

Basic definitions:

PIlQRQI|PAQ|PVR|P&ER
111 1 1 0
1|0 0 1 1
011 0 1 1
010 0 0 0

Useful relationships:

._'(Pl/\' /\Pk):_le\/'-'\/_'Pk
[] (Pl\/') Pl/\ /_'Pk
.PA(QvR):(Q)V(PAR)
e PV(QAR)=(PVQ)A(PVR)

P®Q=(P ﬂQ)(ﬁPAQ)

20-16

Logic to algebra

Statement Constraint

_|P1 51 — 0

PV P, 0L +d6,>1

P1 ® P, 0h+d=1

P1/\P2 51:1,52:1

_|(P1\/P2) 51:0, (5220

P = P 91 < 0, (equivalent to: (—Py) V P,)

P, = (—P,) d1 + 62 < 1 (equivalent to: =(Py A P,))
Pl < P2 51 = 52

Pl — (P2/\P3)
P]_ — (PQ\/P3)
(Pl/\PQ) — P3
(Pl\/P2) — P3
Pi A (P2 V Ps)
Py V (P, A P3)

01 < 0, 01 < 03

01 <y + 03
01+ 02 <1403

01 < 03, 02 < 03
51:1, (52"‘(5321
d01+0,>1,00+03>1

20-17

More logic to algebra

Statement Constraint
k
PiVPyV---V Py Z(S,'Zl
i=1
Ik n
(PLA--AP) = (Pipa V-V P > (1=06)+ > 6>1
i=1 i=k+1
n

at least k out of n are true

exactly k out of n are true

at most k out of n are true

P, <— (P1V---VPk)

P, <— (Pl/\---/\Pk)

> s>k
i:nl
> si=k
i=1
> i<k
i=1
k
6> 08n 00 >0, j=1,...,k
J
i=1
k

Snthk>1+ 6,0 >0nj=1,....k
i=1

20-18

Modeling a restricted set of values

e We may want variable x to only take on values in the set

{alw..,am}.

e We introduce binary variables y1, ..., y, and the constraints
m m
X:Zajyj, Zyjzl, y; €4{0,1}
j=1 J=1
e y; serves to select which a; will be selected.

e The set of variables {y1,ys,...,¥m} is called a
special ordered set (SOS) of variables.

20-19

Example: building a warehouse

e Suppose we are modeling a facility location problem in
which we must decide on the size of a warehouse to build.

e The choices of sizes and associated cost are shown below:

Size | Cost
10 100
20 | 180
40 | 320
60 | 450
80 | 600

Warehouse sizes and costs

20-20

Example: building a warehouse

e Using binary decision variables xq, xo, . . ., x5, we can model
the cost of building the warehouse as

cost = 100x; + 180x> + 320x3 + 450x, + 600x5.

e The warehouse will have size
size =].0X1 + 20X2 + 4OX3 + 60X4 + 80X5,

e and we have the SOS constraint
X1+ X+ x3+ x4 + x5 = 1.

20-21

What about integers?

e What if x is an integer, i.e. x € {1,2,...,10}

e First option: use 10 separate variables:
10 10
x=Y kye D> w=1 ye{01}
k=1 k=1

e Another option: use 4 binary variables (less symmetry):

X=y1+2p+4+8y, 1<x<10, y, {01}

Performance is solver-dependent. If the solver allows integer
constraints directly, that's often the right choice.

20-22

Example: Sudoku

1
2| 9 5
8 5} 3
8 3 2
5 1 2 9
1 5 7
5 6 3
91 |1 6| 2
2

e fill grid with numbers {1,2,...,9}
e each row and each column contains distinct numbers
e each 3 x 3 cluster contains distinct numbers

20-23

Example: Sudoku

e Decision variables: X € {0,1}°%9%9 (729 binary variables)

{1 if (i,/) entry is a k
Xijk = :
0 otherwise

Can fill in known entries right away.
e Basic constraints: (324 in total)
» S 0_1 Xjk =1 Vi,j (SOS constraint)
> Z?:l Xijk =1 Vj, k (column j contains exactly one k)
> Z?:l Xjjk =1 Vi, k (row i contains exactly one k)
> Z(i,j)eCXiJ'k =1 VC,k (cluster C contains exactly one k)

e Much trickier to model using other integer representations!

e Julia code: Sudoku.ipynb

20-24

http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Sudoku.ipynb

	Logic constraints, integer variables
	If-then constraints
	Generalized assignment problems
	Logic constraints
	Modeling a restricted set of values
	Sudoku!

