
CS/ECE/ISyE 524 Introduction to Optimization Spring 2017–18

20. Logic constraints, integer variables

� If-then constraints

� Generalized assignment problems

� Logic constraints

� Modeling a restricted set of values

� Sudoku!

Laurent Lessard (www.laurentlessard.com)

www.laurentlessard.com


If-then constraints

A single simple trick (with suitable adjustments) can help us
model a great variety of if-then constraints

The trick

� We’d like to model the constraint: if z = 0 then aTx ≤ b.

� Let M be an upper bound for aTx − b.

� Write: aTx − b ≤ Mz

� If z = 0, then aTx − b ≤ 0 as required.
Otherwise, we get aTx − b ≤ M , which is always true.

20-2



If-then constraints

Slight change: if z = 1 then aTx ≤ b

� Again, let M be an upper bound for aTx − b

� Write: aTx − b ≤ M(1− z)

Reversed inequality: if z = 0 then aTx ≥ b

� Write constraint as −aTx + b ≤ 0

� Let m be an upper bound on −aTx + b

� Write: −aTx + b ≤ mz . Same as: aTx − b ≥ −mz

� Note: −m is a lower bound on aTx − b.

20-3



If-then constraints

The converse: if aTx ≤ b then z = 1

� Equivalent to: if z = 0 then aTx > b (contrapositive).

� The strict inequality is not really enforceable. Instead,
write: if z = 0 then aTx ≥ b + ε where ε is small.

� Let m be a lower bound for aTx − b and we obtain the
equivalent constraint: aTx − b ≥ mz + ε(1− z)

� If z = 0, we get aTx ≥ b + ε, as required.
Otherwise, we get: aTx − b ≥ m, which is always true.

� Note: If a, x , b are integer-valued, we may set ε = 1.

20-4



If-then constraints (summary)

Logic statement Constraint

if z = 0 then aTx ≤ b aTx − b ≤ Mz

if z = 0 then aTx ≥ b aTx − b ≥ mz

if z = 1 then aTx ≤ b aTx − b ≤ M(1− z)

if z = 1 then aTx ≥ b aTx − b ≥ m(1− z)

if aTx ≤ b then z = 1 aTx − b ≥ mz + ε(1− z)

if aTx ≥ b then z = 1 aTx − b ≤ Mz − ε(1− z)

if aTx ≤ b then z = 0 aTx − b ≥ m(1− z) + εz

if aTx ≥ b then z = 0 aTx − b ≤ M(1− z)− εz

Where M and m are upper and lower bounds on aTx − b.

20-5



Return to fixed costs and lower bounds

� Modeling a fixed cost: if x > 0 then z = 1.

I Use the contrapositive: if z = 0 then x ≤ 0.

I Apply the 1st rule on Slide 20-5.

� Modeling a lower bound: either x = 0 or x ≥ m.

I Equivalent to: if x > 0 then x ≥ m.

I Equivalent to the following two logical constraints:
if x > 0 then z = 1, and if z = 1 then x ≥ m.

I The first one is a fixed cost (see above)

I The second one is the 4th rule on Slide 20-5.

20-6



Generalized assignment problems (GAP)

� Set of machines: M = {1, 2, . . . ,m} that can perform jobs.
(think of these as the facilities in the facility problem)

� Machine i has a fixed cost of hi if we use it at all.

� Machine i has a capacity of bi units of work (this is new!)

� Set of jobs: N = {1, 2, . . . , n} that must be performed.
(think of these as the customers in the facility problem)

� Job j requires aij units of work to be completed if it is
completed on machine i .

� Job j will cost cij if it is completed on machine i .

� Each job must be assigned to exactly one machine.

20-7



GAP model

minimize
x ,z

∑
i∈M

hizi +
∑
i∈M

∑
j∈N

cijxij (fixed cost + assignment cost)

subject to:
∑
i∈M

xij = 1 ∀j ∈ N (one machine per job)∑
j∈N

aijxij ≤ bi ∀i ∈M (work budget)

xij ≤ zi ∀i ∈M, j ∈ N (if xij > 0 then zi = 1)

xij , zi ∈ {0, 1} ∀i ∈M, j ∈ N (all binary!)

� zi = 1 if machine i is used, and

� xij = 1 if job j is performed by machine i .

� Note: many choices possible for Mi and aggregations.

20-8



New constraints

Let’s make GAP more interesting...

1. If you use k or more machines, you must pay a penalty of λ.

2. If you operate either machine 1 or machine 2, you may not
operate both machines 3 and 4 at the same time.

3. If you operate both machines 1 and 2, then machine 3
must be operated at 40% of its capacity.

4. Each job j ∈ N has a duration dj . Minimize the time we
have to wait before all jobs are completed.
(this is called the makespan).

20-9



GAP 1

If you use k or more machines, you must pay a penalty of λ.

� Using k or more machines is equivalent to saying that

z1 + z2 + · · ·+ zm ≥ k

� Let δ1 = 1 if we incur the penalty. We now have the if-then
constraint: if

∑
i∈M zi ≥ k then δ1 = 1.

� Use the 6th rule on Slide 20-5 and obtain:∑
i∈M zi ≤ mδ1 + (k − 1)(1− δ1)

� add λδ1 to the cost function.

20-10



GAP 2

If you operate either machine 1 or machine 2, you may not
operate both machines 3 and 4 at the same time.

� Operating machine 1 or machine 2: z1 + z2 ≥ 1.

� Not operating machines 3 and 4: z3 + z4 ≤ 1

� We must model z1 + z2 ≥ 1 =⇒ z3 + z4 ≤ 1

I Same trick as before: model this in two steps:
z1 + z2 ≥ 1 =⇒ δ2 = 1 and δ2 = 1 =⇒ z3 + z4 ≤ 1

I First follows from 6th rule on Slide 20-5

I Second follows from 3rd rule on Slide 20-5

� Result: z1 + z2 ≤ 2δ2 and z3 + z4 + δ2 ≤ 2.

20-11



GAP 2 (cont’d)

If you operate either machine 1 or machine 2, you may not
operate both machines 3 and 4 at the same time.

We didn’t do anything to ensure that when zi = 1, the
machines are actually operating! (we didn’t explicitly disallow
paying the fixed cost without using the machine).

� To force the converse as well, include the constraint:
if zi = 1 then

∑
j∈N xij ≥ 1

� Use the 4th rule on Slide 20-5.

� Result:
∑

j∈N xij ≥ zi (for i = 1, 2, 3, 4)

20-12



GAP 3

If you operate both machines 1 and 2, then machine 3 must
be operated at 40% of its capacity.

� Operate both machines 1 and 2: z1 + z2 ≥ 2

� Capacity of machine 3 drops: b3 becomes 0.4b3.

� Two parts to the implementation:

I z1 + z2 ≥ 2 =⇒ δ3 = 1. (6th rule on Slide 20-5)

I δ3 = 1 =⇒
∑

j∈N a3jx3j ≤ 0.4b3. (3rd rule on Slide 20-5)

� Equivalently, just replace b3 by: b3(1− δ3) + 0.4b3δ3.

20-13



GAP 4

Each job j ∈ N has a duration dj . Minimize the time we
have to wait before all jobs are completed. (the makespan)

� Machine i completes all its jobs in time:
∑

j∈N xijdj

� Minimax problem (no integer variables needed!)

� Let t be the makespan; t = maxi∈M
(∑

j∈N xijdj
)

� Model: minimize t subject to:

t ≥
∑
j∈N

xijdj for all i ∈M

20-14



Logic constraints

� A proposition is a statement that evaluates to true or
false. One example we’ve seen: a linear constraint aTx ≤ b.

� We’ll use binary variables δi to represent propositions Pi :

δi =

{
1 if proposition Pi is true

0 if proposition Pi is false

The term for this is that δi is an indicator variable.

How can we turn logical statements about the Pi ’s into
algebraic statements involving the δi ’s?

Some standard notation:

∨ means “or” =⇒ means “implies”
∧ means “and” ⇐⇒ means “if and only if”
¬ means “not” ⊕ means “exclusive or”

20-15



Boolean algebra

Basic definitions:

P Q P ∧ Q P ∨ Q P ⊕ Q

1 1 1 1 0
1 0 0 1 1
0 1 0 1 1
0 0 0 0 0

Useful relationships:

� ¬(P1 ∧ · · · ∧ Pk) = ¬P1 ∨ · · · ∨ ¬Pk

� ¬(P1 ∨ · · · ∨ Pk) = ¬P1 ∧ · · · ∧ ¬Pk

� P ∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R)

� P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R)

� P ⊕ Q = (P ∧ ¬Q) ∨ (¬P ∧ Q)

20-16



Logic to algebra
Statement Constraint
¬P1 δ1 = 0
P1 ∨ P2 δ1 + δ2 ≥ 1
P1 ⊕ P2 δ1 + δ2 = 1
P1 ∧ P2 δ1 = 1, δ2 = 1
¬(P1 ∨ P2) δ1 = 0, δ2 = 0
P1 =⇒ P2 δ1 ≤ δ2 (equivalent to: (¬P1) ∨ P2)
P1 =⇒ (¬P2) δ1 + δ2 ≤ 1 (equivalent to: ¬(P1 ∧ P2))
P1 ⇐⇒ P2 δ1 = δ2
P1 =⇒ (P2 ∧ P3) δ1 ≤ δ2, δ1 ≤ δ3
P1 =⇒ (P2 ∨ P3) δ1 ≤ δ2 + δ3
(P1 ∧ P2) =⇒ P3 δ1 + δ2 ≤ 1 + δ3
(P1 ∨ P2) =⇒ P3 δ1 ≤ δ3, δ2 ≤ δ3
P1 ∧ (P2 ∨ P3) δ1 = 1, δ2 + δ3 ≥ 1
P1 ∨ (P2 ∧ P3) δ1 + δ2 ≥ 1, δ1 + δ3 ≥ 1

20-17



More logic to algebra

Statement Constraint

P1 ∨ P2 ∨ · · · ∨ Pk

k∑
i=1

δi ≥ 1

(P1 ∧ · · · ∧ Pk ) =⇒ (Pk+1 ∨ · · · ∨ Pn)
k∑

i=1

(1− δi ) +
n∑

i=k+1

δi ≥ 1

at least k out of n are true
n∑

i=1

δi ≥ k

exactly k out of n are true
n∑

i=1

δi = k

at most k out of n are true
n∑

i=1

δi ≤ k

Pn ⇐⇒ (P1 ∨ · · · ∨ Pk )
k∑

i=1

δi ≥ δn, δn ≥ δj , j = 1, . . . , k

Pn ⇐⇒ (P1 ∧ · · · ∧ Pk ) δn + k ≥ 1 +
k∑

i=1

δi , δj ≥ δn, j = 1, . . . , k

20-18



Modeling a restricted set of values

� We may want variable x to only take on values in the set
{a1, . . . , am}.

� We introduce binary variables y1, . . . , ym and the constraints

x =
m∑
j=1

ajyj ,
m∑
j=1

yj = 1, yj ∈ {0, 1}

� yi serves to select which ai will be selected.

� The set of variables {y1, y2, . . . , ym} is called a
special ordered set (SOS) of variables.

20-19



Example: building a warehouse

� Suppose we are modeling a facility location problem in
which we must decide on the size of a warehouse to build.

� The choices of sizes and associated cost are shown below:

Size Cost
10 100
20 180
40 320
60 450
80 600

Warehouse sizes and costs

20-20



Example: building a warehouse

� Using binary decision variables x1, x2, . . . , x5, we can model
the cost of building the warehouse as

cost = 100x1 + 180x2 + 320x3 + 450x4 + 600x5.

� The warehouse will have size

size = 10x1 + 20x2 + 40x3 + 60x4 + 80x5,

� and we have the SOS constraint

x1 + x2 + x3 + x4 + x5 = 1.

20-21



What about integers?

� What if x is an integer, i.e. x ∈ {1, 2, . . . , 10}

� First option: use 10 separate variables:

x =
10∑
k=1

k yk ,
10∑
k=1

yk = 1, yk ∈ {0, 1}

� Another option: use 4 binary variables (less symmetry):

x = y1 + 2y2 + 4y3 + 8y4, 1 ≤ x ≤ 10, yk ∈ {0, 1}

Performance is solver-dependent. If the solver allows integer
constraints directly, that’s often the right choice.

20-22



Example: Sudoku

� fill grid with numbers {1, 2, . . . , 9}
� each row and each column contains distinct numbers

� each 3× 3 cluster contains distinct numbers

20-23



Example: Sudoku

� Decision variables: X ∈ {0, 1}9×9×9 (729 binary variables)

Xijk =

{
1 if (i , j) entry is a k

0 otherwise

Can fill in known entries right away.

� Basic constraints: (324 in total)

I
∑9

k=1 Xijk = 1 ∀i , j (SOS constraint)

I
∑9

i=1 Xijk = 1 ∀j , k (column j contains exactly one k)

I
∑9

j=1 Xijk = 1 ∀i , k (row i contains exactly one k)

I
∑

(i ,j)∈C Xijk = 1 ∀C , k (cluster C contains exactly one k)

� Much trickier to model using other integer representations!

� Julia code: Sudoku.ipynb

20-24

http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Sudoku.ipynb

	Logic constraints, integer variables
	If-then constraints
	Generalized assignment problems
	Logic constraints
	Modeling a restricted set of values
	Sudoku!


