20. Logic constraints, integer variables

- If-then constraints
- Generalized assignment problems
- Logic constraints
- Modeling a restricted set of values
- Sudoku!

If-then constraints

A single simple trick (with suitable adjustments) can help us model a great variety of if-then constraints

The trick

- We'd like to model the constraint: if $z=0$ then $a^{\top} x \leq b$.
- Let M be an upper bound for $a^{\top} x-b$.
- Write: $a^{\top} x-b \leq M z$
- If $z=0$, then $a^{\top} x-b \leq 0$ as required.

Otherwise, we get $a^{\top} x-b \leq M$, which is always true.

If-then constraints

Slight change: if $z=1$ then $a^{\top} x \leq b$

- Again, let M be an upper bound for $a^{\top} x-b$
- Write: $a^{\top} x-b \leq M(1-z)$

Reversed inequality: if $z=0$ then $a^{\top} x \geq b$

- Write constraint as $-a^{\top} x+b \leq 0$
- Let m be an upper bound on $-a^{\top} x+b$
- Write: $-a^{\top} x+b \leq m z$. Same as: $a^{\top} x-b \geq-m z$
- Note: $-m$ is a lower bound on $a^{\top} x-b$.

If-then constraints

The converse: if $a^{\top} x \leq b$ then $z=1$

- Equivalent to: if $z=0$ then $a^{\top} x>b$ (contrapositive).
- The strict inequality is not really enforceable. Instead, write: if $z=0$ then $a^{\top} x \geq b+\varepsilon$ where ε is small.
- Let m be a lower bound for $a^{\top} x-b$ and we obtain the equivalent constraint: $a^{\top} x-b \geq m z+\varepsilon(1-z)$
- If $z=0$, we get $a^{\top} x \geq b+\varepsilon$, as required.

Otherwise, we get: $a^{\top} x-b \geq m$, which is always true.

- Note: If a, x, b are integer-valued, we may set $\varepsilon=1$.

If-then constraints (summary)

Logic statement	Constraint
if $z=0$ then $a^{\top} x \leq b$	$a^{\top} x-b \leq M z$
if $z=0$ then $a^{\top} x \geq b$	$a^{\top} x-b \geq m z$
if $z=1$ then $a^{\top} x \leq b$	$a^{\top} x-b \leq M(1-z)$
if $z=1$ then $a^{\top} x \geq b$	$a^{\top} x-b \geq m(1-z)$
if $a^{\top} x \leq b$ then $z=1$	$a^{\top} x-b \geq m z+\varepsilon(1-z)$
if $a^{\top} x \geq b$ then $z=1$	$a^{\top} x-b \leq M z-\varepsilon(1-z)$
if $a^{\top} x \leq b$ then $z=0$	$a^{\top} x-b \geq m(1-z)+\varepsilon z$
if $a^{\top} x \geq b$ then $z=0$	$a^{\top} x-b \leq M(1-z)-\varepsilon z$

Where M and m are upper and lower bounds on $a^{\top} x-b$.

Return to fixed costs and lower bounds

- Modeling a fixed cost: if $x>0$ then $z=1$.
- Use the contrapositive: if $z=0$ then $x \leq 0$.
- Apply the $1^{\text {st }}$ rule on Slide 20-5.
- Modeling a lower bound: either $x=0$ or $x \geq m$.
- Equivalent to: if $x>0$ then $x \geq m$.
- Equivalent to the following two logical constraints: if $x>0$ then $z=1$, and if $z=1$ then $x \geq m$.
- The first one is a fixed cost (see above)
- The second one is the $4^{\text {th }}$ rule on Slide 20-5.

Generalized assignment problems (GAP)

- Set of machines: $\mathcal{M}=\{1,2, \ldots, m\}$ that can perform jobs. (think of these as the facilities in the facility problem)
- Machine i has a fixed cost of h_{i} if we use it at all.
- Machine i has a capacity of b_{i} units of work (this is new!)
- Set of jobs: $\mathcal{N}=\{1,2, \ldots, n\}$ that must be performed. (think of these as the customers in the facility problem)
- Job j requires $a_{i j}$ units of work to be completed if it is completed on machine i.
- Job j will cost $c_{i j}$ if it is completed on machine i.
- Each job must be assigned to exactly one machine.

GAP model

$\underset{x, z}{\operatorname{minimize}} \sum_{i \in \mathcal{M}} h_{i} z_{i}+\sum_{i \in \mathcal{M}} \sum_{j \in \mathcal{N}} c_{i j} x_{i j} \quad$ (fixed cost + assignment cost)
subject to: $\quad \sum_{i \in \mathcal{M}} x_{i j}=1 \quad \forall j \in \mathcal{N} \quad$ (one machine per job)

$$
\begin{array}{ll}
\sum_{j \in \mathcal{N}} a_{i j} x_{i j} \leq b_{i} & \forall i \in \mathcal{M} \quad \text { (work budget) } \\
x_{i j} \leq z_{i} & \forall i \in \mathcal{M}, j \in \mathcal{N} \quad \text { (if } x_{i j}>0 \text { then } z_{i}=1 \text {) } \\
x_{i j}, z_{i} \in\{0,1\} & \forall i \in \mathcal{M}, j \in \mathcal{N}
\end{array} \quad \text { (all binary!) }
$$

- $z_{i}=1$ if machine i is used, and
- $x_{i j}=1$ if job j is performed by machine i.
- Note: many choices possible for M_{i} and aggregations.

New constraints

Let's make GAP more interesting...

1. If you use k or more machines, you must pay a penalty of λ.
2. If you operate either machine 1 or machine 2 , you may not operate both machines 3 and 4 at the same time.
3. If you operate both machines 1 and 2 , then machine 3 must be operated at 40% of its capacity.
4. Each job $j \in \mathcal{N}$ has a duration d_{j}. Minimize the time we have to wait before all jobs are completed.
(this is called the makespan).

GAP 1

If you use k or more machines, you must pay a penalty of λ.

- Using k or more machines is equivalent to saying that

$$
z_{1}+z_{2}+\cdots+z_{m} \geq k
$$

- Let $\delta_{1}=1$ if we incur the penalty. We now have the if-then constraint: if $\sum_{i \in \mathcal{M}} z_{i} \geq k$ then $\delta_{1}=1$.
- Use the $6^{\text {th }}$ rule on Slide 20-5 and obtain:

$$
\sum_{i \in \mathcal{M}} z_{i} \leq m \delta_{1}+(k-1)\left(1-\delta_{1}\right)
$$

- add $\lambda \delta_{1}$ to the cost function.

GAP 2

If you operate either machine 1 or machine 2 , you may not operate both machines 3 and 4 at the same time.

- Operating machine 1 or machine $2: z_{1}+z_{2} \geq 1$.
- Not operating machines 3 and 4: $z_{3}+z_{4} \leq 1$
- We must model $z_{1}+z_{2} \geq 1 \Longrightarrow z_{3}+z_{4} \leq 1$
- Same trick as before: model this in two steps:

$$
z_{1}+z_{2} \geq 1 \Longrightarrow \delta_{2}=1 \quad \text { and } \quad \delta_{2}=1 \Longrightarrow z_{3}+z_{4} \leq 1
$$

- First follows from $6^{\text {th }}$ rule on Slide 20-5
- Second follows from $3^{\text {rd }}$ rule on Slide 20-5
- Result: $z_{1}+z_{2} \leq 2 \delta_{2}$ and $z_{3}+z_{4}+\delta_{2} \leq 2$.

GAP 2 (cont'd)

If you operate either machine 1 or machine 2 , you may not operate both machines 3 and 4 at the same time.

We didn't do anything to ensure that when $z_{i}=1$, the machines are actually operating! (we didn't explicitly disallow paying the fixed cost without using the machine).

- To force the converse as well, include the constraint: if $z_{i}=1$ then $\sum_{j \in \mathcal{N}} x_{i j} \geq 1$
- Use the $4^{\text {th }}$ rule on Slide 20-5.
- Result: $\sum_{j \in \mathcal{N}} x_{i j} \geq z_{i}($ for $i=1,2,3,4)$

GAP 3

If you operate both machines 1 and 2 , then machine 3 must be operated at 40% of its capacity.

- Operate both machines 1 and 2: $z_{1}+z_{2} \geq 2$
- Capacity of machine 3 drops: b_{3} becomes $0.4 b_{3}$.
- Two parts to the implementation:
- $z_{1}+z_{2} \geq 2 \Longrightarrow \delta_{3}=1$. ($6^{\text {th }}$ rule on Slide 20-5)
- $\delta_{3}=1 \Longrightarrow \sum_{j \in \mathcal{N}} a_{3 j} x_{3 j} \leq 0.4 b_{3}$. (3 rd rule on Slide 20-5)
- Equivalently, just replace b_{3} by: $b_{3}\left(1-\delta_{3}\right)+0.4 b_{3} \delta_{3}$.

GAP 4

Each job $j \in \mathcal{N}$ has a duration d_{j}. Minimize the time we have to wait before all jobs are completed. (the makespan)

- Machine i completes all its jobs in time: $\sum_{j \in \mathcal{N}} x_{i j} d_{j}$
- Minimax problem (no integer variables needed!)
- Let t be the makespan; $t=\max _{i \in \mathcal{M}}\left(\sum_{j \in \mathcal{N}} x_{i j} d_{j}\right)$
- Model: minimize t subject to:

$$
t \geq \sum_{j \in \mathcal{N}} x_{i j} d_{j} \quad \text { for all } i \in \mathcal{M}
$$

Logic constraints

- A proposition is a statement that evaluates to true or false. One example we've seen: a linear constraint $a^{\top} x \leq b$.
- We'll use binary variables δ_{i} to represent propositions P_{i} :

$$
\delta_{i}= \begin{cases}1 & \text { if proposition } P_{i} \text { is true } \\ 0 & \text { if proposition } P_{i} \text { is false }\end{cases}
$$

The term for this is that δ_{i} is an indicator variable.
How can we turn logical statements about the P_{i} 's into algebraic statements involving the δ_{i} 's?

Some standard notation:

\vee	means "or"
\wedge	means "and"
\neg	means "not"

\Longrightarrow means "implies"
\Longleftrightarrow means "if and only if"
$\oplus \quad$ means "exclusive or"

Boolean algebra

Basic definitions:

P	Q	$P \wedge Q$	$P \vee Q$	$P \oplus Q$
1	1	1	1	0
1	0	0	1	1
0	1	0	1	1
0	0	0	0	0

Useful relationships:

- $\neg\left(P_{1} \wedge \cdots \wedge P_{k}\right)=\neg P_{1} \vee \cdots \vee \neg P_{k}$
- $\neg\left(P_{1} \vee \cdots \vee P_{k}\right)=\neg P_{1} \wedge \cdots \wedge \neg P_{k}$
- $P \wedge(Q \vee R)=(P \wedge Q) \vee(P \wedge R)$
- $P \vee(Q \wedge R)=(P \vee Q) \wedge(P \vee R)$
- $P \oplus Q=(P \wedge \neg Q) \vee(\neg P \wedge Q)$

Logic to algebra

Statement

$\neg P_{1}$	$\delta_{1}=0$
$P_{1} \vee P_{2}$	$\delta_{1}+\delta_{2} \geq 1$
$P_{1} \oplus P_{2}$	$\delta_{1}+\delta_{2}=1$
$P_{1} \wedge P_{2}$	$\delta_{1}=1, \delta_{2}=1$
$\neg\left(P_{1} \vee P_{2}\right)$	$\delta_{1}=0, \delta_{2}=0$
$P_{1} \Longrightarrow P_{2}$	$\delta_{1} \leq \delta_{2}$ (equivalent to: $\left.\left(\neg P_{1}\right) \vee P_{2}\right)$
$P_{1} \Longrightarrow\left(\neg P_{2}\right)$	$\delta_{1}+\delta_{2} \leq 1$ (equivalent to: $\left.\neg\left(P_{1} \wedge P_{2}\right)\right)$
$P_{1} \Longleftrightarrow P_{2}$	$\delta_{1}=\delta_{2}$
$P_{1} \Longrightarrow\left(P_{2} \wedge P_{3}\right)$	$\delta_{1} \leq \delta_{2}, \delta_{1} \leq \delta_{3}$
$P_{1} \Longrightarrow\left(P_{2} \vee P_{3}\right)$	$\delta_{1} \leq \delta_{2}+\delta_{3}$
$\left(P_{1} \wedge P_{2}\right) \Longrightarrow P_{3}$	$\delta_{1}+\delta_{2} \leq 1+\delta_{3}$
$\left(P_{1} \vee P_{2}\right) \Longrightarrow P_{3}$	$\delta_{1} \leq \delta_{3}, \delta_{2} \leq \delta_{3}$
$P_{1} \wedge\left(P_{2} \vee P_{3}\right)$	$\delta_{1}=1, \delta_{2}+\delta_{3} \geq 1$
$P_{1} \vee\left(P_{2} \wedge P_{3}\right)$	$\delta_{1}+\delta_{2} \geq 1, \delta_{1}+\delta_{3} \geq 1$

More logic to algebra

Statement

$P_{1} \vee P_{2} \vee \cdots \vee P_{k}$	$\sum_{i=1}^{k} \delta_{i} \geq 1$
$\left(P_{1} \wedge \cdots \wedge P_{k}\right) \Longrightarrow\left(P_{k+1} \vee \cdots \vee P_{n}\right)$	$\sum_{\substack{k=1 \\ k}}\left(1-\delta_{i}\right)+\sum_{i=k+1}^{n} \delta_{i} \geq 1$
at least k out of n are true	$\sum_{i=1}^{n} \delta_{i} \geq k$
exactly k out of n are true	$\sum_{i=1}^{n} \delta_{i}=k$
at most k out of n are true	$\sum_{i=1}^{n} \delta_{i} \leq k$
$P_{n} \Longleftrightarrow\left(P_{1} \vee \cdots \vee P_{k}\right)$	$\sum_{i=1}^{k} \delta_{i} \geq \delta_{n}, \delta_{n} \geq \delta_{j}, j=1, \ldots, k$
$P_{n} \Longleftrightarrow\left(P_{1} \wedge \cdots \wedge P_{k}\right)$	$\delta_{n}+k \geq 1+\sum_{i=1}^{k} \delta_{i}, \delta_{j} \geq \delta_{n}, j=1, \ldots, k$

Modeling a restricted set of values

- We may want variable x to only take on values in the set $\left\{a_{1}, \ldots, a_{m}\right\}$.
- We introduce binary variables y_{1}, \ldots, y_{m} and the constraints

$$
x=\sum_{j=1}^{m} a_{j} y_{j}, \quad \sum_{j=1}^{m} y_{j}=1, \quad y_{j} \in\{0,1\}
$$

- y_{i} serves to select which a_{i} will be selected.
- The set of variables $\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$ is called a special ordered set (SOS) of variables.

Example: building a warehouse

- Suppose we are modeling a facility location problem in which we must decide on the size of a warehouse to build.
- The choices of sizes and associated cost are shown below:

Size	Cost
10	100
20	180
40	320
60	450
80	600

Warehouse sizes and costs

Example: building a warehouse

- Using binary decision variables $x_{1}, x_{2}, \ldots, x_{5}$, we can model the cost of building the warehouse as

$$
\operatorname{cost}=100 x_{1}+180 x_{2}+320 x_{3}+450 x_{4}+600 x_{5}
$$

- The warehouse will have size

$$
\text { size }=10 x_{1}+20 x_{2}+40 x_{3}+60 x_{4}+80 x_{5}
$$

- and we have the SOS constraint

$$
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=1
$$

What about integers?

- What if x is an integer, i.e. $x \in\{1,2, \ldots, 10\}$
- First option: use 10 separate variables:

$$
x=\sum_{k=1}^{10} k y_{k}, \quad \sum_{k=1}^{10} y_{k}=1, \quad y_{k} \in\{0,1\}
$$

- Another option: use 4 binary variables (less symmetry):

$$
x=y_{1}+2 y_{2}+4 y_{3}+8 y_{4}, \quad 1 \leq x \leq 10, \quad y_{k} \in\{0,1\}
$$

Performance is solver-dependent. If the solver allows integer constraints directly, that's often the right choice.

Example: Sudoku

					1			
2	7			9		5		
	8				5			3
		8		3			2	
	5		1		2		9	
	1			5		7		
5			6				3	
		9		1			6	2
			2					

- fill grid with numbers $\{1,2, \ldots, 9\}$
- each row and each column contains distinct numbers
- each 3×3 cluster contains distinct numbers

Example: Sudoku

- Decision variables: $X \in\{0,1\}^{9 \times 9 \times 9}$ (729 binary variables)

$$
X_{i j k}= \begin{cases}1 & \text { if }(i, j) \text { entry is a } k \\ 0 & \text { otherwise }\end{cases}
$$

Can fill in known entries right away.

- Basic constraints: (324 in total)
- $\sum_{k=1}^{9} X_{i j k}=1 \quad \forall i, j$ (SOS constraint)
- $\sum_{i=1}^{9} X_{i j k}=1 \quad \forall j, k$ (column j contains exactly one k)
- $\sum_{j=1}^{9} X_{i j k}=1 \quad \forall i, k$ (row i contains exactly one k)
- $\sum_{(i, j) \in C} X_{i j k}=1 \quad \forall C, k$ (cluster C contains exactly one k)
- Much trickier to model using other integer representations!
- Julia code: Sudoku.ipynb

